Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures.
نویسندگان
چکیده
Growth temperature has a profound impact on the kinetic properties of enzymes in microbial metabolic networks. Activities of glycolytic enzymes in Saccharomyces cerevisiae were up to 7.5-fold lower when assayed at 12 degrees C than at 30 degrees C. Nevertheless, the in vivo glycolytic flux in chemostat cultures (dilution rate: 0.03 h(-1)) grown at these two temperatures was essentially the same. To investigate how yeast maintained a constant glycolytic flux despite the kinetic challenge imposed by a lower growth temperature, a systems approach was applied that involved metabolic flux analysis, transcript analysis, enzyme activity assays, and metabolite analysis. Expression of hexose-transporter genes was affected by the growth temperature, as indicated by differential transcription of five HXT genes and changed zero trans-influx kinetics of [(14)C]glucose transport. No such significant changes in gene expression were observed for any of the glycolytic enzymes. Fermentative capacity (assayed off-line at 30 degrees C), which was 2-fold higher in cells grown at 12 degrees C, was therefore probably controlled predominantly by glucose transport. Massive differences in the intracellular concentrations of nucleotides (resulting in an increased adenylate energy charge at low temperature) and glycolytic intermediates indicated a dominant role of metabolic control as opposed to gene expression in the adaptation of glycolytic enzyme activity to different temperatures. In evolutionary terms, this predominant reliance on metabolic control of a central pathway, which represents a significant fraction of the cellular protein of the organism, may be advantageous to limit the need for protein synthesis and degradation during adaptation to diurnal temperature cycles.
منابع مشابه
Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis.
Yeast xylose metabolism is generally considered to be restricted to respirative conditions because the two-step oxidoreductase reactions from xylose to xylulose impose an anaerobic redox imbalance. We have recently developed, however, a Saccharomyces cerevisiae strain that is at present the only known yeast capable of anaerobic growth on xylose alone. Using transcriptome analysis of aerobic che...
متن کاملGlycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions.
Anaerobic and aerobic chemostat cultures of Saccharomyces cerevisiae were performed at a constant dilution rate of 0.10 h(-1). The glucose concentration was kept constant, whereas the nitrogen concentration was gradually decreasing; i.e., the conditions were changed from glucose and energy limitation to nitrogen limitation and energy excess. This experimental setup enabled the glycolytic rate t...
متن کاملEffects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae.
A multicopy plasmid carrying the PDC1 gene (encoding pyruvate decarboxylase; Pdc) was introduced in Saccharomyces cerevisiae CEN. PK113-5D. The physiology of the resulting prototrophic strain was compared with that of the isogenic prototrophic strain CEN.PK113-7D and an empty-vector reference strain. In glucose-grown shake-flask cultures, the introduction of the PDC1 plasmid caused a threefold ...
متن کاملQuantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation.
A major challenge in systems biology lies in the integration of processes occurring at different levels, such as transcription, translation, and metabolism, to understand the functioning of a living cell in its environment. We studied the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae and investigated the regulatory mechanisms underlying this increase. We used glu...
متن کاملPhysiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
Based on the high acid tolerance and the simple nutritional requirements of Saccharomyces cerevisiae, engineered strains of this yeast are considered biocatalysts for industrial production of high-purity undissociated lactic acid. However, high concentrations of lactic acid are toxic to S. cerevisiae, thus limiting its growth and product formation. Physiological and transcriptional responses to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 14 شماره
صفحات -
تاریخ انتشار 2007